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Abstract: In this study, the instability of Walters’ (model
B’) viscoelastic fluid in a Darcy-Brinkman-Boussinesq sys-
tem heated from below saturating a porous medium in
electrohydrodynamics is considered. By applying the lin-
ear stability analysis and normal modes, the dispersion re-
lation accounting for the effect of Prandtl number, electric
Rayleigh number, Darcy number, Brinkman-Darcy num-
ber, Taylor number and kinematic viscoelasticity param-
eter is derived. The effects of electric Rayleigh number,
Darcy number, Brinkman-Darcy number and Taylor num-
ber on the onset of stationary convection have been inves-
tigated both analytically and graphically.

Keywords: Walter’ (model B’) fluid, rotation, AC electric
field, viscosity, viscoelasticity, Brinkman model, porous
medium

1 Introduction
In the classical Darcy equation, the Laplacian (viscous)
term (Brinkman term) is added in the governing equa-
tion for flow through a porous medium, known as Darcy-
Brinkman equation. The equation has been widely used
to examine the high-porosity porous media. In recent
years, the Darcy-Brinkman equation has been employed
in biomedical hydrodynamic studies and in the modelling
of thin fibrous surface layer coating blood vessels (Khaled
and Vafai [1]). Rana and Jamwal[2] studied the effect of ro-
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tation on the onset of compressible viscoelastic fluid satu-
rating a Darcy-Brinkman porous medium, while Rana et
al. [3] studied the effect of rotation on the onset of con-
vection in the Walters’ (model B’) viscoelastic fluid heated
from below in a Brinkman porous medium.

A detailed account of thermal instability of Newto-
nian fluid under the various assumptions of hydrodynam-
ics, hydromagnetics and electrohydrodynamics has been
given by Chandrasekhar [4], Landau [5], Robert [6], Castel-
lanos [7], Melcher et al. [8] and Jones [9]. For the last
few decades, various researchers studied the electrohy-
drodynamic instability by taking different types of flu-
ids because it has various applications in EHD enhanced
thermal transfer, EHD pumps, EHD in microgravity, mi-
cromechanical systems, drug delivery, micro-cooling sys-
tem, nanotechnology and so on. A great advantage of the
EHD pumps is that there is no need for a moving com-
ponent such as pistons. Also, it is fabricated and assem-
bled. Such type of pumps are widely used in microme-
chanical systems, drug delivery and micro-cooling system
(Gross and Porter [10], Turnbull [11], Maekawa et al. [12],
Smorodin [13], Galal [14] and Chang et al. [15]). The prob-
lems of thermal instability in a fluid under the action
of AC electric field has been studied by Takashima [16],
Takashima and Ghosh [17], Takashima and Hamabata [18],
Othman [19], Shivakumara et al. [20–22] and Rana et
al. [23].

Recently, Rana et al. [24] studied the electrohydrody-
namic instability of an elastico-viscousWalters’ (model B’)
dielectric fluid layer. In the present paper, the study is ex-
tended to Brinkmanmodel and the effect of rotation is also
investigated. This necessitates two additional parameters,
namely Brinkman-Darcy number D̃a, and Taylor number
Ta. To the best ofmyknowledge, this problemhas not been
studied as yet.
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2 Mathematical model of the
problem and governing
equations

Here, we consider an infinite horizontal layer of an incom-
pressible Walters’ (model B’) viscoelastic fluid in a Darcy-
Brinkman-Boussinesq system of thickness d, confined by
the planes z = 0 and z = d as shown in Figure 1. The layer
is rotating about the z-axis with constant angular velocity
Ω = (0, 0, Ω) and uniform vertical AC electric field applied
across the layer, which is acted upon by a gravity force g
= (0, 0, −g) aligned in the z-direction. The temperatures at
the lower and upper boundaries are taken to be T0 and T1
(T0 > T1).
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Figure 1: Physical configuration

Let ρ, µ, µ′, K, k1 q(u, v, w), g, Ω, T, κ, A and E denote
respectively, the density, viscosity, viscoelasticity, dielec-
tric constant, medium permeability, Darcy velocity vec-
tor, acceleration due to gravity, angular velocity, tempera-
ture, thermal diffusivity, ratio of heat capacity and the root-
mean-square value of electric field. Then, the equations of
conservation of mass, momentum and thermal energy for
Walters’ (model B’) viscoelastic fluid in a Darcy-Brinkman-
Boussinesq (Chandrasekhar [4], Takashima [16], Shivaku-
mara [22], and Rana et al. [23, 24]) system are:

∇ · q = 0, (1)

ρ
φ

[︂
∂q
∂t +

1
ε (q ·∇)q

]︂
= −∇P + ρg + µ̃∇2q (2)

− 1
k1

(︂
µ − µ′ ∂∂t

)︂
q + 2ρ (q × Ω) − 1

2 (E · E)∇K,

A ∂T∂t + (q ·∇) T = κ∇2T, (3)

where
P =p − ρ2

∂K
∂ρ (E · E) (4)

is the modified pressure (Takashima [16]).
The Maxwell equations are:

∇ × E = 0 (5)

∇ · (KE) = 0 (6)

Let V be the root mean square value of electric potential,
the electric potential can be expressed as:

E = −∇V (7)

Thedielectric constant is assumed to be the linear function
of temperature and is of the form:

K = K0 [1 − 𝛾 (T − T0)] (8)

where 𝛾 > 0, is the thermal coefficient of expansion of di-
electric constant and is assumed to be small.

The equation of state is:

ρ = ρ0 [1 − α (T − T0)] , (9)

where α is coefficient of thermal expansion and the suffix
zero refers to values at the reference level z = 0.

Let q′, T′, E′, ρ′, K′, P′ be the perturbations in q, T, E′,
ρ, K′, P′ respectively.

By applying infinitesimal perturbations on the basic
state, we get:

q = q′, T = Tb + T′, E = Eb + E′, ρ = ρb + ρ′, (10)
K = Kb + K′, P = Pb + P′

Then the linear stability equations in non-dimensional
form (after neglecting the primes for simplicity) are:[︂

1
Pr

∂
∂t +

1
Da

(︂
1 − F ∂∂t

)︂
− D̃a∇2

]︂
∇2w (11)

= Rat∇2
hT −

√
Ta ∂ξ∂z + Rae∇

2
h

(︂
T − ∂V∂z

)︂
,

[︂
1
Pr

∂
∂t +

1
Da

(︂
1 − F ∂∂t

)︂
− D̃a∇2

]︂
ξ =

√
Ta ∂w∂z , (12)

[︂
A ∂∂t −∇

2
]︂
T = w, (13)

∇2V = ∂T∂z , (14)

where, we have used the dimensionless variables(︀
x′, y′, z′,

)︀
=
(︁x, y, z

d

)︁
, q′ = dκ q, t′ = κ

d2 t,
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T′ = 1
∆T T, ξ ′ = d2

κ ξ , V′ = 1
𝛾E0∆Td

V

and dimensionless parameters as: Pr = νφ
κ ; the Prandtl

number, Da = k1
d2 ; the Darcy number, D̃a = µ̃k1

µd2 ; the

Brinkman-Darcy number, F = µ′
µ ; the viscoelasticity pa-

rameter, Ta = 4Ω2d4
φν2 ; the modified Taylor number, Rat =

gα∆Td3
νκ ; the thermal Rayleigh number, Rae = 𝛾2K0E20(∆T)

2d2
µκ ;

the AC electric Rayleigh number and ξ = ∂v
∂x −

∂u
∂y ; the z-

component of vorticity.
We assume that the temperature at the boundaries

is kept fixed, the fluid layer is confined between the two
boundaries. The boundary conditions appropriate (Chan-
drasekhar [4], Takashima [16], Shivakumara et al. [22] and
Rana et al. [23, 24] to the problem are:

w = ∂
2w
∂z2 = ∂ξ∂z = ∂V∂z = 0, T = 0 or DT = 0. (15)

3 Linear stability analysis
We assume that the perturbation quantities have x, y and
t dependence of the form

[w, T,V, ξ ] (16)
=
[︀
W (z) , Θ (z) , Φ(z), Z(z)

]︀
exp (ilx + imy + ωt) ,

where l and m are the wave numbers in the x and y direc-
tion, respectively, and ω is the complex growth rate of the
disturbances.

Using Eq. (16) in Eqs. (11)–(15), we obtain:[︂
ω
Pr+

1
Da (1 − Fω) − D̃a

(︁
D2 − a2

)︁]︂(︁
D2 − a2

)︁
W (17)

= −Rata2Θ −
√
TaDZ + Raea2 (Θ − DΦ) ,

[︂
ω
Pr +

1
Da (1 − Fω) − −D̃a

(︁
D2 − a2

)︁]︂
Z =

√
TaDW , (18)

[︁
Aω −

(︁
D2 − a2

)︁]︁
Θ = W , (19)

(︁
D2 − a2

)︁
Φ = DΘ, (20)

w = D2W = DZ = DΦ = 0, Θ = 0 (21)

where a2 = l2 + m2, D = d
dz .

Eqs. (17)–(20) form a double eigenvalue problem for
Rat or Rae and ω with respect to the boundary conditions
(21).

We assume the solution to W, Θ, Φ and Z of the form:

W = W0 sin πz, Θ = Θ0 sin πz Φ = Φ0 cos πz (22)
Z = Z0 cos πz,

which satisfy the boundary conditions of Eq. (22).
Substituting Eq. (22) into Eqs. (17)–(20), we obtain the

following matrix equation:⎡⎢⎢⎢⎣
[︀ ω
Pr +

1
Da (1 − Fω) + D̃aJ

2]︀ J2 −a2 (Rat + Rae)
−1 ω + J2

−π
√
Ta 0

0 π

(23)

· · · π
√
Ta −Raea2π

· · · 0 0
· · · ω

Pr +
1
Da (1 − Fω) + D̃aJ

2 0
· · · 0 J2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
W0
Θ0
Z0
Φ0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
0
0

⎤⎥⎥⎥⎦ ,
where J2 = π2 + a2 is the total wave number.

The linear system (21) has a non-trivial solution if and
only if⃒⃒⃒⃒

⃒⃒⃒⃒
⃒

[︀ ω
Pr +

1
Da (1 − Fω) + D̃aJ

2]︀ J2 −a2 (Rat + Rae)
−1 ω + J2

−π
√
Ta 0

0 π

· · · π
√
Ta −Raea2π

· · · 0 0
· · · ω

Pr +
1
Da (1 − Fω) + D̃aJ

2 0
· · · 0 J2

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = 0,

which yields

Rat =
Aω + J2
a2

[︂(︂
1
Pr −

F
Da

)︂
ω + 1

Da + D̃aJ2
]︂

(24)

+ π
2Ta
a2

J2 + Aω(︀ 1
Pr −

F
Da

)︀
ω + 1

Da + D̃aJ2
− a

2

J2 Rae .

Eq. (22) is the dispersion relation accounting for the ef-
fect of Prandtl number, electric Rayleigh number, Darcy
number, Brinkman-Darcy number, Taylor number and
kinematic viscoelasticity parameter in a layer of Walters’
(model B’) viscoelastic fluid in a porous medium.

Taking ω = iωi in Eq. (24), we obtain

Rat = ∆1 + iωi∆2, (25)

where

∆1 =
J2
a2

[︂
1
Da + D̃aJ2 − A

(︂
1
Pr −

F
Da

)︂
ω2
i

]︂
(26)

+ π
2Ta
a2

[︃
J2
Da + D̃aJ

2 + A
(︀ 1
Pr −

F
Da

)︀
ω2
i

1
Da2 −

(︀ 1
Pr −

F
Da

)︀2ω2
i + +D̃a2J4

]︃
− a

2

J2 Rae
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and

∆2 =
J2
a2

[︂
A
Da + AD̃aJ2 +

(︂
1
Pr −

F
Da

)︂
J2 (27)

+π2Ta
A
Da + AD̃aJ

2 − J2
(︀ 1
Pr −

F
Da

)︀
1
Da2 + D̃a2J4 −

(︀ 1
Pr −

F
Da

)︀2ω2
i

]︃
.

Hence, it follows fromEq. (25) that eitherωi = 0 (exchange
stability, steady onset) or ∆2 = 0, ωi ≠ 0 (overstability,
oscillatory onset).

4 Stationary convection
For stationary convection, putting ω = 0 in Eq. (24), we
obtain

(Rat)s =
(︀
π2 + a2

)︀2
a2Da +

π2
(︀
π2 + a2

)︀
DaTa

a2 (28)

+
(︀
π2 + a2

)︀3D̃a
a2 − a2

π2 + a2 Rae .

Eq. (26) expresses the thermal Rayleigh number as a func-
tion of the dimensionless resultantwave number a and the
parameters Ta, Da and Rae. It is found that the kinematic
viscoelasticity parameter F vanishes with ω and the Wal-
ters’ (model B’) viscoelastic dielectric fluid acts like anordi-
nary Newtonian dielectric fluid. Eq. (26) is identical to that
obtained by Shivakumara et al. [22] and Rana et al. [23, 24].

In the absence of Brinkmanmodel, Eq. (26) reduces to

(Rat)s =
(︀
π2 + a2

)︀2
a2 +

π2
(︀
π2 + a2

)︀
DaTa

a2 . (29)

In the absence of AC electric field (i.e., when Rae = 0),
Eq. (28) reduces to

(Rat)s =
(︀
π2 + a2

)︀2
a2 (30)

+
(︀
π2 + a2

)︀3D̃a
a2 +

π2
(︀
π2 + a2

)︀
DaTa

a2 .

which is in good agreement with the equation derived by
Chandrasekhar [4], Shivakumara [21] and Rana et al. [23,
24].

In the absence of rotation (i.e., when Ta = 0), Eq. (28)
reduces to

(Rat)s =
π2 + a2
a2Da +

(︀
π2 + a2

)︀3D̃a
a2 − a2

π2 + a2 Rae . (31)

Eq. (29) is in good agreement with the equation obtained
by Robert [6] and Rana et al. [23, 24].

To study the effect of rotation and AC electric field on
electrohydrodynamic stationary convection, we examine
the behavior of ∂(Rat)s∂Da , ∂Rat∂D̃a

∂(Rat)s
∂Ta and ∂(Rat)s

∂Rae analytically.

From Eq. (26), we obtain

∂(Rat)s
∂Da =

π2
(︀
π2 + a2

)︀
a2

[︂
Ta − 1

π2Da2

]︂
(32)

which is positive if Ta > 1/π2Da2. Thus, the Darcy number
inhibits the onset of electrohydrodynamic stationary con-
vection implying thereby that the Darcy number has a sta-
bilizing effect on the system,which is in anagreementwith
the results derived by Takashima [16], Shivakumara [21]
and Rana and Jamwal [22]. However, in the absence of ro-
tation, the Darcy number has a destabilizing effect:

∂(Rat)s
∂Da =

π2
(︀
π2 + a2

)︀
a2

[︂
Ta − 1

π2Da2

]︂
which is negative if Ta < 1/π2Da2, that is, rotation is small.
Therefore, Darcy number has a destabilizing effect on the
system.

It is evident from Eq. (26) that

∂(Rat)s
∂D̃a

=
(︀
π2 + a2

)︀3
a2 (33)

which is positive. Thus, the Brinkman-Darcy number in-
hibits the onset of electrohydrodynamic stationary convec-
tion thereby implying that rotation has a stabilizing effect
on the system, which is in agreement with the results de-
rived by Rana et al. [3].

It is evident from Eq. (26) that

∂(Rat)s
∂Ta =

π2
(︀
π2 + a2

)︀
Da

a2 (34)

which is positive. Thus, rotation inhibits the onset of elec-
trohydrodynamic stationary convection thereby implying
that rotation has a stabilizing effect on the system, which
is an agreementwith the results derived by Takashima [16],
Rana and Jamwal [2] and Shivakumara [22].

∂Rat
∂Rae

= − a2
π2 + a2 , (35)

which is negative thereby implying that AC electric field
hastens the electroconvection and it has a destabilizing ef-
fect on the system, which is in an agreement with the re-
sults derived by Takashima [15], Shivakumara [20–22] and
Rana et al. [23, 24].

We now study the effect of Darcy number, Brinkman-
Darcy number, Taylor number andAC electric field numeri-
cally by giving some numerical values to the parameters to
depict the stability characteristics. The dispersion relation
(26) is analyzed numerically. Graphs have been plotted by
giving some numerical values to the parameters, to depict
the stability characteristics.
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Figure 2: Variation of thermal Rayleigh number (Rat)s with the wave
number a for different values of the Darcy number Da

In Figure 2, the thermal Rayleigh number (Rat)s is
plotted against the dimensionless wave number a for dif-
ferent values of Darcy number (Da), while the values of
Brinkman-Darcy number, electric Rayleigh number and
Taylor number are kept fixed. This shows that the thermal
Rayleigh number (Rat)s increases with an increase in the
Darcy number (Da). Thus, the Darcy number has a stabiliz-
ing effect on stationary convection, which is in agreement
with the result obtained analytically from Eq. (30).

Figure 3: Variation of thermal Rayleigh number (Rat)s with the wave
number a for different values of the Brinkman-Darcy number D̃a

In Figure 3, the thermal Rayleighnumber (Rat)s is plot-
ted against the dimensionless wave number a for different
values Brinkman-Darcy number (D̃a), while the values of
Darcy number electric Rayleigh number and Taylor num-
ber are kept fixed. This shows that the thermal Rayleigh
number (Rat)s increaseswith an increase in the Brinkman-
Darcy number (D̃a). Thus, the Brinkman-Darcy number
has a stabilizing effect on stationary convection, which is
in agreement with the result obtained analytically from
Eq. (31).

In Figure 4, the thermal Rayleigh number (Rat)s is
plotted against the dimensionless wave number a for dif-
ferent values of Taylor number (Ta), while the values of
Brinkman-Darcy number, electric Rayleigh number and

Figure 4: Variation of thermal Rayleigh number (Rat)s with the wave
number a for different values of the Taylor number Ta

Darcy number are kept fixed. This shows that the thermal
Rayleigh number (Rat)s increases with an increase in the
Taylor number (Ta). Thus, rotation has a stabilizing effect
on stationary convection, which is in agreement with the
result obtained analytically from Eq. (32).

In Figure 5, the thermal Rayleighnumber (Rat)s is plot-
ted against dimensionless wave number a for different val-
ues of the electric Rayleigh number (Rae), while the val-
ues of electric Taylor number (Ta) and Darcy number (Da)
are kept fixed. This shows that as (Rae)increases, the ther-
mal Rayleigh number (Rat)s decreases. Hence, AC electric
fieldhas adestabilizing effect on the stationary convection,
which is in agreementwith the result obtained analytically
from Eq. (33).

Figure 5: Variation of thermal Rayleigh number (Rat)s with the wave
number a for different values of AC electric Rayleigh number Rae

5 Conclusions
The thermal instability of Walters’ (model B’) viscoelastic
rotating fluid layer in electrohydrodynamics has been in-
vestigated for the case of free-free boundaries by using lin-
ear stability analysis. For the case of stationary convection,
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the non-Newtonian electrohydrodynamic Walters’ (model
B’) viscoelastic rotating fluid acts like an ordinary Newto-
nian rotating fluid. Darcy number, Brinkman-Darcy num-
ber and Taylor number, all three inhibit the onset of elec-
trohydrodynamic stationary convection and has stabiliz-
ing effects on the stationary convection, while AC electric
field hasten the onset of electrohydrodynamic stationary
convection and has a destabilizing effect on the stationary
convection. Figures 2, 3 and 4 clearly depict the stabilizing
effects of Darcy number, Brinkman-Darcy number and Tay-
lor number respectively, while Figure 5 depicts the destabi-
lizing effect of AC electric field.
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